高中数学

6种高中数学数学思想

高中数学 发布时间:2023-10-27 12:07 阅读量:10

6种高中数学数学思想

1.函数与方程思想

函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。

而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。

2.数形结合思想

数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。

解题类型:

①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。

②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。

③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。

3.分类讨论思想

分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。

解决分类讨论问题的关键是化整为零,在局部讨论降低难度。

常见的类型:

类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;

类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;

类型3:由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;

类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。

类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。

分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。

4.转化与化归思想

转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。

转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。

转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。

常见的转化方法:

①直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;

②换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;

③数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径;

④等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;

⑤特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;

⑥构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;

⑦坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径。

5.特殊与一般思想

用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

6.极限思想

极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

报名、考试、学习咨询 / 免费预约
我已阅读并接受《用户协议》《隐私政策》
英语培训
少儿英语培训 英语口语培训 新概念英语培训 剑桥英语培训 商务英语培训 PETS公共英语培训 出国前英语培训 英语四六级培训 成人英语培训
出国培训
雅思培训 托福培训 gmat培训 sat培训 gre培训 ap培训 alevel培训 act培训 aeas培训 ib培训 托业培训 pte培训
出国留学
国际课程 留学预科 欧洲留学 国际教育 新加坡留学 日本留学 美国留学 德国留学 韩国留学 澳洲留学 俄罗斯留学 加拿大留学 英国留学 西班牙留学 新西兰留学 意大利留学 法国留学 荷兰留学 瑞士留学 亚洲留学 香港留学 爱尔兰留学 马来西亚留学 音乐留学 艺术留学作品集培训
国际学校
国际小学 国际初中 国际高中
学历提升
考研培训 在职研究生 MBA培训 EMBA培训 MPA培训 MEM培训 MPAcc培训 成人高考 开放大学 自学考试 统招专升本
小语种培训
日语培训 意大利语培训 韩语培训 法语培训 德语培训 西班牙语培训 葡萄牙语培训 俄语培训
青少儿成长
儿童感统训练 学习能力培训 儿童注意力训练 儿童记忆力训练 儿童认知表达能力培训 儿童逻辑思维训练 儿童运动障碍训练 儿童语言发育障碍训练 儿童自闭症训练 儿童多动症训练 青少年心理辅导 青少年自信培训 亲子沟通培训 儿童情绪管理 家庭教育/家长培训 素质特长培训 少儿编程培训 夏令营
中小学辅导
幼小衔接 小学辅导 初中辅导 高一辅导 高二辅导 高三辅导 高三理综辅导 高三文综辅导 高考复读 艺考文化课辅导 高考辅导 高考单招 高中辅导 高考志愿填报指导
文体艺术培训
少儿体适能 足球培训 篮球培训 网球培训 羽毛球培训 瑜伽培训 瑜伽教练培训 形体训练 爵士舞培训 健身教练培训 美术培训 书法培训 声乐培训 模特培训
建筑工程
一级建造师 二级建造师 监理工程师 一级造价工程师 二级造价工程师 咨询工程师 BIM项目管理师 公路检测工程师
消防安全
消防设施操作员 保安员培训 一级消防工程师 二级消防工程师 初级安全工程师 中级安全工程师 应急救援员培训
财会金融
会计培训 会计实操培训 证券从业资格 基金从业资格 银行从业资格 期货从业资格 经济师 注册会计师 初级会计师 中级会计师
职业资格
教师公开招聘 法律职业资格 社会工作者培训 人力资源管理师培训 职业资格考试 家庭教育指导师培训 碳排放管理师培训 教师资格证培训 计算机软件水平考试 教师资格面试
医药健康
康复理疗师培训 执业药师 心理咨询师培训 护士资格证 女性保健培训 针灸培训 月嫂培训 推拿培训 催乳师培训 护理培训 健康管理师培训 养老护理员培训 育婴师培训 公共营养师培训
艺考培训
美术艺考培训 音乐艺考培训 播音主持艺考培训 影视表演艺考培训 舞蹈艺考培训 编导艺考培训 空乘艺考培训 书法艺考培训
餐饮培训
面点培训 小吃培训 厨师培训 烘焙培训 饮品培训 西点培训 甜品培训 咖啡师培训 西餐培训
少儿艺术培训
少儿口才培训 少儿模特培训 少儿围棋培训 少儿书法培训 少儿美术培训 少儿表演培训
计算机IT培训
编程培训 ug编程培训 plc编程培训 java培训 python培训 php培训 c语言培训 linux培训 软件设计培训 软件测试培训 软件工程师培训 网站开发培训 嵌入式开发培训 web前端培训 电脑培训
游戏动漫
游戏编程培训 原画培训 游戏策划培训 动漫培训 影视动漫培训 动画制作培训 影视制作培训 影视后期培训 视频剪辑培训 插画培训
网络营销培训
淘宝培训 新媒体营销培训 电商培训 seo培训 短视频培训 产品经理培训
设计培训
3dmax培训 效果图培训 平面设计培训 广告设计培训 美工培训 ui设计培训 网页设计培训 ps培训
职业技能培训
电工培训 摄影培训 证书大全
美容美发培训
化妆培训 美甲培训 美容培训 美发培训 纹绣培训 半永久培训 彩妆培训 皮肤管理培训 美睫师培训 形象设计培训
管理培训
拓展训练 企业管理培训 领导力培训 物业管理培训
职场提升培训
口才培训 当众讲话沟通培训 演讲培训 销售口才培训 礼仪培训 心理素质培训
工业和信息化技术
人工智能培训 大数据培训 云计算培训 物联网培训 区块链培训 网络安全培训 软件开发培训 虚拟现实培训 数字媒体培训 集成电路培训 通信技术培训 智能制造培训 工业机器人培训 智能网联汽车培训 碳中和碳达峰培训 其他
中考
中考资讯 初中语文 初中数学 初中英语 初中历史 初中地理 初中政治 初中物理 初中化学 初中生物 中考作文 中考试题 小升初
高考
高考资讯 大学及专业介绍 高校招生 高考作文 高考试题 高中英语 高中数学 高中语文 高考助考 高考备考 高考志愿填报
职业教育
中职 高职 单招 职教问答 职教热点 职教专业
百科知识
教育百科
提交