自学考试

2022年自考02198《线性代数》复习资料(三)

自学考试 发布时间:2022-04-14 12:17 阅读量:83

自考是我国高等教育基本制度之一,是我国现阶段高等教育的一个重要组成部分,是以学历考试为主的高等教育国家考试,是个人自学、社会助学、国家考试相结合的高等教育形式。下面是给大家整理的2022年自考02198《线性代数》复习资料(三),希望帮助大家提高自考复习效率。

 

 

自考《线性代数》复习资料

一、重点

1、理解:向量、向量运算以及向量的线性组合与线性表出,极大线性无关组的概念,线性相关与线性无关的概念,向量组的秩的概念,矩阵的秩的概念及性质,基础解系的概念。

2、掌握:向量的运算及运算规律,矩阵秩的计算,齐次、非齐次线性方程组解的结构。

3、运用:线性相关、线性无关的判定,线性方程组解的判断,齐次、非齐次线性方程组的解法。

二、难点

线性相关、线性无关的判定。向量组的秩与矩阵的秩的关系。方程组与向量组线性表示及秩之间的联系。

三、重点难点解析

1、n维向量的概念与运算

1)概念

2)运算

若α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T

①加法:α+β=(a1+b1,a2+b2,…,an+bn)T

②数乘:kα=(ka1,ka2,…,kan)T

③内积:(α。β)=a1b1+a2b2+,…,+anbn=αTβ=βTα

2、线性组合与线性表出

3、线性相关与线性无关

1)概念

2)线性相关与线性无关的充要条件

①线性相关

α1,α2,…,αs线性相关

<==>齐次方程组(α1,α2,…,αs)(x1,x2,…,xs)T=0有非零解

<==>向量组的秩r(α1,α2,…,αs)<s(向量的个数)< p="">

<==>存在某αi(i=1,2,…,s)可由其余s-1个向量线性表出

特别的:n个n维向量线性相关<==>│α1α2…αn│=0

n+1个n维向量一定线性相关

②线性无关

α1,α2,…,αs线性无关

<==>齐次方程组(α1,α2,…,αs)(x1,x2,…,xs)T=0只有零解

<==>向量组的秩r(α1,α2,…,αs)=s(向量的个数)

<==>每一个向量αi(i=1,2,…,s)都不能用其余s-1个向量线性表出

③重要结论

A、阶梯形向量组一定线性无关

B、若α1,α2,…,αs线性无关,则它的任一个部分组αi1,αi2,…,αi t必线性无关,它的任一延伸组必线性无关。

C、两两正交,非零的向量组必线性无关。

4、向量组的秩与矩阵的秩

1)极大线性无关组的概念

2)向量组的秩

3)矩阵的秩

①r(A)=r(AT)

②r(A+B)≤r(A)+r(B)

③r(kA)=r(A),k≠0

④r(AB)≤min(r(A),r(B))

⑤如A可逆,则r(AB)=r(B);如B可逆,则r(AB)=r(A)

⑥A是m×n阵,B是n×p阵,如AB=0,则r(A)+r(B)≤n

4)向量组的秩与矩阵的秩的关系

①r(A)=A的行秩(矩阵A的行向量组的秩)=A的列秩(矩阵A的列向量组的秩)

②经初等变换矩阵、向量组的秩均不变

③若向量组(Ⅰ)可由(Ⅱ)线性表出,则r(Ⅰ)≤r(Ⅱ)。特别的,等价的向量组有相同的秩,但秩相同的向量组不一定等价。

5、基础解系的概念及求法

1)概念

2)求法

对A作初等行变换化为阶梯形矩阵,称每个非零行中第一个非零系数所代表的未知数是主元(共有r(A)个主元),那么剩于的其他未知数就是自由变量(共有n-r(A)个),对自由变量按阶梯形赋值后,再带入求解就可得基础解系。

6、齐次方程组有非零解的判定

1)设A是m×n矩阵,Ax=0有非零解的充要条件是r(A)<n,亦即a的列向量线性相关。< p="">

2)若A为n阶矩阵,Ax=0有非零解的充要条件是│A│=0

3)Ax=0有非零解的充分条件是m<n,即方程个数<未知数个数< p="">

7、非齐次线性方程组有解的判定

1)设A是m×n矩阵,Ax=b有解的充要条件是系数矩阵A的秩等于增广矩阵(A增)的秩,即r(A)=r(A增)

2)设A是m×n矩阵,方程组Ax=b

①有唯一解<==>r(A)=r(A增)=n

②有无穷多解<==>r(A)=r(A增)

③无解<==>r(A)+1=r(A增)

8、非齐次线性方程组解的结构

如n元线性方程组Ax=b有解,设,η2,…,ηt是相应齐次方程组Ax=0的基础解系,ξ是Ax=b的一个解,则k1η1+k2η2+…+ktηt+ξ是Ax=b的通解。

1)若ξ1,ξ2是Ax=b的解,则ξ1-ξ2是Ax=0的解

2)若ξ是Ax=b的解,η是Ax=0的解,则ξ+kη仍是Ax=b的解

3)若Ax=b有唯一解,则Ax=0只有零解;反之,当Ax=0只有零解时,Ax=b没有无穷多解(可能无解,也可能只有唯一解)

四、题型及解题思路

1、有关n维向量概念与性质的命题

2、向量的加法与数乘运算

3、线性相关与线性无关的证明

1)定义法

设k1α1+k2α2+…+ksαs=0,然后对上式做恒等变形(要向已知条件靠拢!)

①由B=C可得AB=AC,因此,可按已知条件的信息对上式乘上某个A

②展开整理上式,直接用已知条件转化为齐次线性方程组,最后通过分析论证k1,k2,…,ks的取值,得出所需结论。

2)用秩(等于向量个数)

3)齐次方程组只有零解

4)反证法

4、求给定向量组的秩和极大线性无关组

多用初等变换法,将向量组化为矩阵,通过初等变换来求解。

5、求矩阵的秩

常用初等变换法。

6、求解齐次线性方程组与非齐次线性方程组

报名、考试、学习咨询 / 免费预约
我已阅读并接受《用户协议》《隐私政策》
英语培训
少儿英语培训 英语口语培训 新概念英语培训 剑桥英语培训 商务英语培训 PETS公共英语培训 出国前英语培训 英语四六级培训 成人英语培训
出国培训
雅思培训 托福培训 gmat培训 sat培训 gre培训 ap培训 alevel培训 act培训 aeas培训 ib培训 托业培训 pte培训
出国留学
国际课程 留学预科 欧洲留学 国际教育 新加坡留学 日本留学 美国留学 德国留学 韩国留学 澳洲留学 俄罗斯留学 加拿大留学 英国留学 西班牙留学 新西兰留学 意大利留学 法国留学 荷兰留学 瑞士留学 亚洲留学 香港留学 爱尔兰留学 马来西亚留学 音乐留学 艺术留学作品集培训
国际学校
国际小学 国际初中 国际高中
学历提升
考研培训 在职研究生 MBA培训 EMBA培训 MPA培训 MEM培训 MPAcc培训 成人高考 开放大学 自学考试 统招专升本
小语种培训
日语培训 意大利语培训 韩语培训 法语培训 德语培训 西班牙语培训 葡萄牙语培训 俄语培训
青少儿成长
儿童感统训练 学习能力培训 儿童注意力训练 儿童记忆力训练 儿童认知表达能力培训 儿童逻辑思维训练 儿童运动障碍训练 儿童语言发育障碍训练 儿童自闭症训练 儿童多动症训练 青少年心理辅导 青少年自信培训 亲子沟通培训 儿童情绪管理 家庭教育/家长培训 素质特长培训 少儿编程培训 夏令营
中小学辅导
幼小衔接 小学辅导 初中辅导 高一辅导 高二辅导 高三辅导 高三理综辅导 高三文综辅导 高考复读 艺考文化课辅导 高考辅导 高考单招 高中辅导 高考志愿填报指导
文体艺术培训
少儿体适能 足球培训 篮球培训 网球培训 羽毛球培训 瑜伽培训 瑜伽教练培训 形体训练 爵士舞培训 健身教练培训 美术培训 书法培训 声乐培训 模特培训
建筑工程
一级建造师 二级建造师 监理工程师 一级造价工程师 二级造价工程师 咨询工程师 BIM项目管理师 公路检测工程师
消防安全
消防设施操作员 保安员培训 一级消防工程师 二级消防工程师 初级安全工程师 中级安全工程师 应急救援员培训
财会金融
会计培训 会计实操培训 证券从业资格 基金从业资格 银行从业资格 期货从业资格 经济师 注册会计师 初级会计师 中级会计师
职业资格
教师公开招聘 法律职业资格 社会工作者培训 人力资源管理师培训 职业资格考试 家庭教育指导师培训 碳排放管理师培训 教师资格证培训 计算机软件水平考试 教师资格面试
医药健康
康复理疗师培训 执业药师 心理咨询师培训 护士资格证 女性保健培训 针灸培训 月嫂培训 推拿培训 催乳师培训 护理培训 健康管理师培训 养老护理员培训 育婴师培训 公共营养师培训
艺考培训
美术艺考培训 音乐艺考培训 播音主持艺考培训 影视表演艺考培训 舞蹈艺考培训 编导艺考培训 空乘艺考培训 书法艺考培训
餐饮培训
面点培训 小吃培训 厨师培训 烘焙培训 饮品培训 西点培训 甜品培训 咖啡师培训 西餐培训
少儿艺术培训
少儿口才培训 少儿模特培训 少儿围棋培训 少儿书法培训 少儿美术培训 少儿表演培训
计算机IT培训
编程培训 ug编程培训 plc编程培训 java培训 python培训 php培训 c语言培训 linux培训 软件设计培训 软件测试培训 软件工程师培训 网站开发培训 嵌入式开发培训 web前端培训 电脑培训
游戏动漫
游戏编程培训 原画培训 游戏策划培训 动漫培训 影视动漫培训 动画制作培训 影视制作培训 影视后期培训 视频剪辑培训 插画培训
网络营销培训
淘宝培训 新媒体营销培训 电商培训 seo培训 短视频培训 产品经理培训
设计培训
3dmax培训 效果图培训 平面设计培训 广告设计培训 美工培训 ui设计培训 网页设计培训 ps培训
职业技能培训
电工培训 摄影培训 证书大全
美容美发培训
化妆培训 美甲培训 美容培训 美发培训 纹绣培训 半永久培训 彩妆培训 皮肤管理培训 美睫师培训 形象设计培训
管理培训
拓展训练 企业管理培训 领导力培训 物业管理培训
职场提升培训
口才培训 当众讲话沟通培训 演讲培训 销售口才培训 礼仪培训 心理素质培训
工业和信息化技术
人工智能培训 大数据培训 云计算培训 物联网培训 区块链培训 网络安全培训 软件开发培训 虚拟现实培训 数字媒体培训 集成电路培训 通信技术培训 智能制造培训 工业机器人培训 智能网联汽车培训 碳中和碳达峰培训 其他
中考
中考资讯 初中语文 初中数学 初中英语 初中历史 初中地理 初中政治 初中物理 初中化学 初中生物 中考作文 中考试题 小升初
高考
高考资讯 大学及专业介绍 高校招生 高考作文 高考试题 高中英语 高中数学 高中语文 高考助考 高考备考 高考志愿填报
职业教育
中职 高职 单招 职教问答 职教热点 职教专业
百科知识
教育百科
提交