自学考试 发布时间:2022-04-14 12:03 阅读量:21
自考是我国高等教育基本制度之一,是我国现阶段高等教育的一个重要组成部分,是以学历考试为主的高等教育国家考试,是个人自学、社会助学、国家考试相结合的高等教育形式。下面是给大家整理的2022年自考02198《线性代数》复习资料(二),希望帮助大家提高自考复习效率。
一、重点
1、理解:行列式的定义,余子式,代数余子式。
2、掌握:行列式的基本性质及推论。
3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。
二、难点
行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。
三、重要公式
1、若A为n阶方阵,则│kA│=kn│A│
2、若A、B均为n阶方阵,则│AB│=│A│。│B│
3、若A为n阶方阵,则│A*│=│A│n-1
若A为n阶可逆阵,则│A-1│=│A│-1
4、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi
四、题型及解题思路
1、有关行列式概念与性质的命题
2、行列式的计算(方法)
1)利用定义
2)按某行(列)展开使行列式降阶
3)利用行列式的性质
①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。
②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。
③逐次行(列)相加减,化简行列式。
④把行列式拆成几个行列式的和差。
4)递推法,适用于规律性强且零元素较多的行列式
5)数学归纳法,多用于证明
3、运用克莱姆法则求解线性方程组
若D=│A│≠0,则Ax=b有唯一解,即
x1=D1/D,x2=D2/D,…,xn=Dn/D
其中Dj是把D中xj的系数换成常数项。
注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。
4、运用系数行列式│A│判别方程组解的问题
1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解)
2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法则求出。