成人高考 发布时间:2023-03-01 12:53 阅读量:9
难点 函数图象与图象变换
函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用。因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质。
●难点磁场
(★★★★★)已知函数f(x)=ax3+bx2+cx+d的图象如图,求b的范围。
难点 函数中的综合问题
函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样。本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力。
●难点磁场
(★★★★★)设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4。
(1)求证:f(x)为奇函数;
(2)在区间[-9,9]上,求f(x)的最值。
难点 三角函数的图象和性质
三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来。本节主要帮助考生掌握图象和性质并会灵活运用。
●难点磁场
(★★★★)已知α、β为锐角,且x(α+β- )>0,试证不等式f(x)= x<2对一切非零实数都成立。
●案例探究
[例1]设z1=m+(2-m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范围。
难点 三角函数式的化简与求值
三角函数式的化简和求值是高考考查的重点内容之一。通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍。
●难点磁场
(★★★★★)已知 <β<α< ,cos(α-β)= ,sin(α+β)=- ,求sin2α的值_________.
难点1 集合思想及应用
集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用。本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用。
●难点磁场
(★★★★★)已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠ ,求实数m的取值范围。
难点2 充要条件的判定
充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系。本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系。
●难点磁场
(★★★★★)已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件
难点3 运用向量法解题
平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题。
●难点磁场
(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线
AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值。
难点4 三个“二次”及关系
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具。高考试题中近一半的试题与这三个“二次”问题有关。本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
●难点磁场
已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围。
难点5 求解函数解析式
求解函数解析式是高考重点考查内容之一,需引起重视。本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力。