考研数学三考哪些内容?
一、微积分函数、极限、连续考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.了解数列极限和函数极限(包括左极限与右极限)的概念。
6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
7.理解无穷小的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系。
8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理,介值定理),并会应用这些性质。
二、一元函数微分学考试要求
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
2.掌握基本初等函数的导数公式。导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数。
3.了解高阶导数的概念,会求简单函数的高阶导数。
4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。
5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理、了解泰勒定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用。
6.会用洛必达法则求极限。
7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。
8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的当时,的图形是凸的),会求函数图形的拐点和渐近线。
9.会描述简单函数的图形。
三、一元函数积分学考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法。
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法。
3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题。
4.了解反常积分的概念,会计算反常积分。
教学点:4个 人气:186
教学点:4个 人气:180
教学点:4个 人气:125
教学点:4个 人气:113
教学点:4个 人气:104
教学点:4个 人气:103
关于我们 | 联系我们 | 咨询电话:400-0909-044
川公网安备 51019002004404号
以上信息知识产权归“南京新东方大学学习中心”所有,并对内容的真实性和合法性负责,如有侵权或投诉,请联系我们处理。