一、24考研数学概率论怎么学比较好?
第一章随机事件与概率
本章需要掌握概率统计的基本概念,公式。其核心内容是概率的基本计算,以及五大公式的熟练应用,加法公式、乘法公式、条件概率公式、全概率公式以及贝叶斯公式。
第二章随机变量及其分布
本章重点掌握分布函数的性质;离散型随机变量的分布律与分布函数及连续型随机变量的密度函数与分布函数;常见离散型及连续型随机变量的分布;一维随机变量函数的分布。
第三章多维随机变量的分布
在涉及二维离散型随机变量的题中,往往用到“先求取值、在求概率”的做点步骤。二维连续型随机变量的相关计算,比如边缘分布、条件分布是考试的重点和难点,考生在复习时要总结出求解边缘分布、条件分布的解题步骤。掌握用随机变量的独立性的判断的充要条件。最后是要会计算二维随机变量简单函数的分布,包括两个离散变量的函数、两个连续变量的函数、一个离散和一个连续变量的函数、以及特殊函数的分布。
第四章随机变量的数字特征
本章的复习,首先要记住常见分布的数字特征,考试中一定会间接地用到这些结论。另外,本章可以与数理统计的考点结合,综合后出大题,应该引起考生足够的重视。
第五章大数定律和中心极限定理
本章考查的重点是一个切比雪夫不等式,以及三个大数定律,两个中心极限定理的条件和结论,考试需要记住。
第六章数理统计的基本概念
重点在于“三大分布、八个定理”以及计算统计量的数字特征。
第七章参数估计
本章的重点是矩估计和最大似然估计,经常以解答题的形式进行考查。对于数一来说,有时还会要求验证估计量的无偏性,这是和数字特征相结合。区间估计和假设检验只有数一的同学要求,考题中较少涉及到。
二、数学考研概率论记忆口诀
第一章随机事件
互斥对立加减功,条件独立乘除清;
全概逆概百分比,二项分布是核心;
必然事件随便用,选择先试不可能。
第二、三章一维、二维随机变量
1)离散问模型,分布列表清,边缘用加乘,条件概率定联合,独立试矩阵
2)连续必分段,草图仔细看,积分是关键,密度微分算
3)离散先列表,连续后求导;分布要分段,积分画图算
第五、六章数理统计、参数估计
正态方和卡方出,卡方相除变F,
若想得到t分布,一正n卡再相除。
样本总体相互换,矩法估计很方便;
似然函数分开算,对数求导得零蛋;
区间估计有点难,样本函数选在前;
分位维数惹人嫌,导出置信U方甜。
第七章假设检验
检验均值用U-T,分位对称别大意;
方差检验有卡方,左窄右宽不稀奇;
不论卡方或U-T,维数减一要牢记;
代入比较临界值,拒绝必在否定域!
教学点:2个 人气:135
教学点:2个 人气:121
教学点:2个 人气:112
教学点:2个 人气:111
教学点:2个 人气:104
教学点:2个 人气:93
教学点:2个 人气:83
教学点:2个 人气:79
关于我们 | 联系我们 | 咨询电话:400-0909-044
川公网安备 51019002004404号
以上信息知识产权归“广州新东方大学生学习与发展中心”所有,并对内容的真实性和合法性负责,如有侵权或投诉,请联系我们处理。